Neurobiological Mechanisms of Functional Recovery After Spinal Cord Injury or Stroke; the Long Way from the Lab Bench to the Clinic with a Neurite Growth Enhancing Therapy

Martin E. Schwab

Brain Research Institute, University of Zurich and Dept. of Health Sciences and Technology, ETH Zurich

Following injury of the brain or spinal cord, lesioned nerve fibers can spontaneously grow new branches and form new connections. This new «hardware» can be fine tuned and stabilized by intensive use and training during rehabilitation. The length of these regrowing fibers is restricted, however, to a few mm. Specific neurite growth inhibitory factors were found to restrict plastic and regenerative nerve fiber growth in the adult brain and spinal cord (CNS). The membrane protein Nogo-A is a well characterized neurite growth inhibitor in the adult CNS. Nogo-A activates an intracellular signalling cascade via multisubunit receptor complexes. Function blocking antibodies against Nogo-A have been applied to rats and macaque monkeys with spinal cord injuries as well as animals with large stroke lesions of the sensory-motor cortex. In the spinal cord, injured fibers showed enhanced regenerative sprouting as well as long-distance regeneration with formation of large terminal arbors. Spared fiber tracts showed enhanced compensatory sprouting, often covering relatively long distances. In animals with cortical strokes, fibers from the intact corticobulbar or corticospinal system crossed the midline, supplying functional innervation to the denervated brain stem and spinal cord under the influence of anti-Nogo-A antibodies. Functional recovery, including bladder function after large, incomplete spinal cord lesions, was improved. Many functions could be further enhanced by intense rehabilitative training. Silencing of the sprouted, midline crossing corticospinal fibers in the stroke animals abolished the regained skilled forelimb movements.—Antibodies against human Nogo-A were shown to be well tolerated and safe after 4 weeks of continuous intrathecal application into the lumbar liquor space in a clinical Phase 1 trial in tetra- and paraplegic patients. These antibodies are currently entering a Phase 2 multicenter European clinical trial for acute cervical spinal cord injury, and a Phase I/II trial for stroke.